

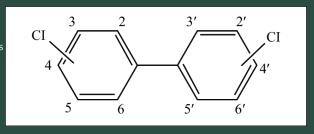
Gabriela Martinez
Senior
University of Puerto Rico at Aguadilla
SURP Attendee Summer 2021

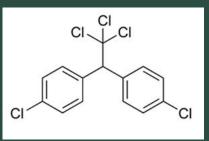
Yoon Hee Cho, PhD., MPH Mentor

Gabriela Martinez

EXPOSURE TO PERSISTENT ORGANIC POLLUTANTS AND GLOBAL DNA METHYLATION IN WHALES

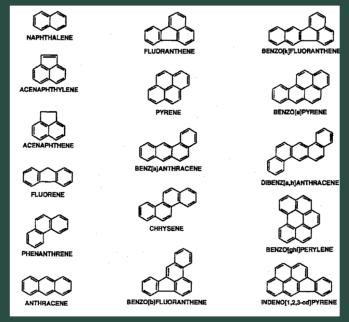
Research was supported by the National Institute Of Environmental Health Sciences of the National Institutes of Health under Award Number R25ES022866. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


POPs

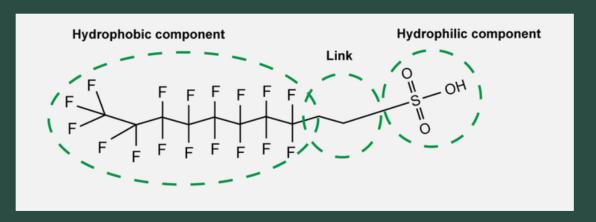

Chemical substances widely used but persist in environment.

PCBs
Polychlorinated biphenyls

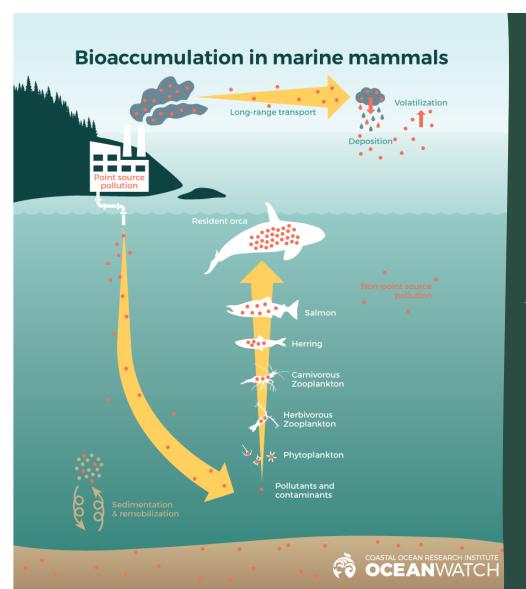
DDTs Dichlorodiphenyltrichloroethane



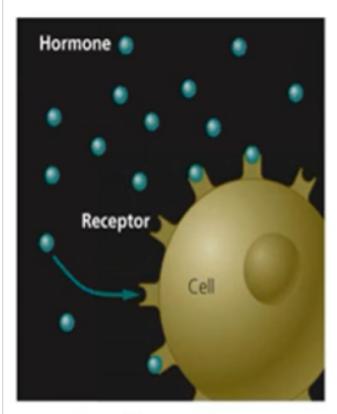
Insecticide: slow to degrade


PBDEs Polybrominated diphenyl ethers

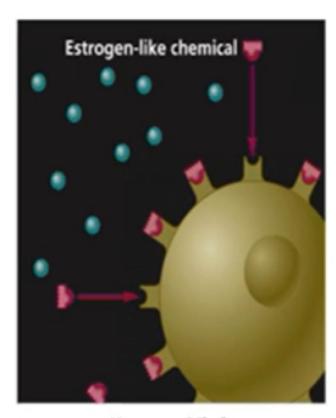
mixtures of several brominated substances


Dioxin: slow to degrade

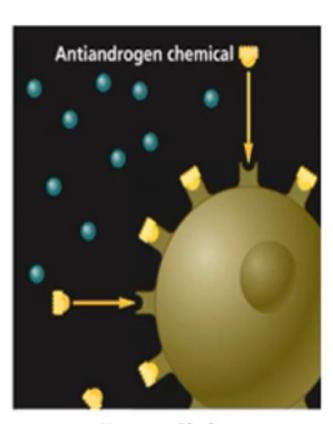
Low degradability and hydrophobic



Carbon chains in which hydrogen atoms are replaced by fluorine atoms



Bioaccumulate through the food chain and pose a risk of causing adverse effects to human health and the environment

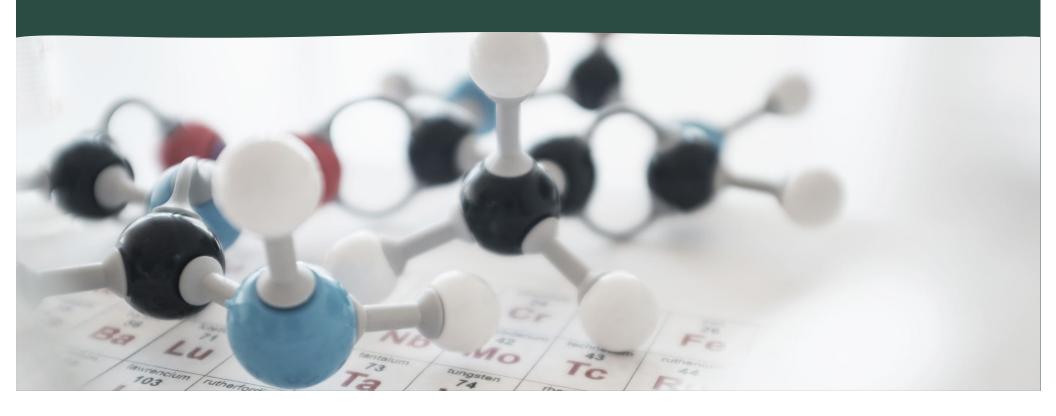

Endocrine Disruptor

Normal Hormone Process

Hormone Mimic

Hormone Blocker

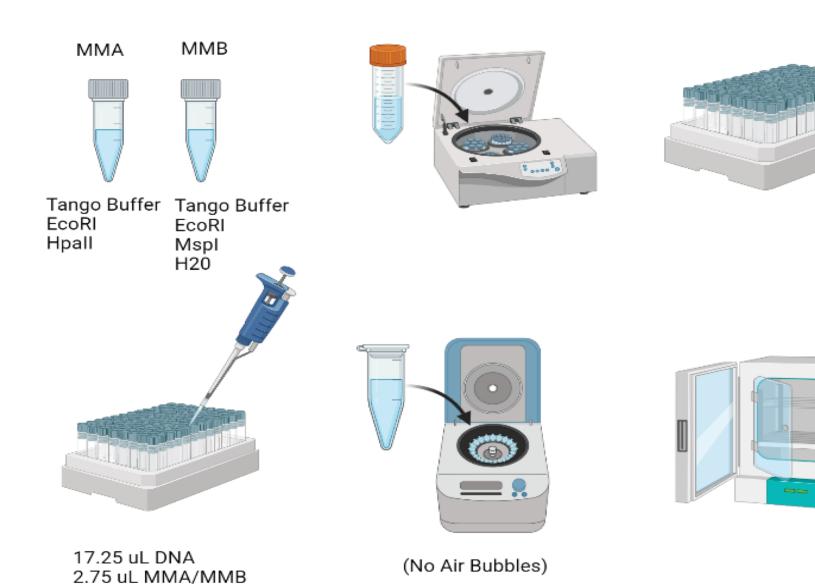
What I am going to be working with


DNA from Dolphins Delphinus capensis

POP Levels

		DDTs	PBDEs	PAHs	I	
√de	PCBs	ΣDDTs	ΣPBDEs	ΣΡΑΗs	ΣPFAS.	
.∕√ID1	4040.40	6630.10	824.59	166.62	195.21	
ĆMD2	4101.76	5877.18	986.74	1251.70	156.60	
CMD3	2184.53	3378.88	451.44	1.58	216.54	
CMD4	3005.32	4480.00	642.80	1.18	501.04	\
CMD5	3311.02	4922.62	643.74	313.63	384.08	
CMD6	3537.75	5466.78	825.94	120.03	69.80	
CMD7	6645.05	10603.01	853.49	1.45	273.35	
CMD8	3910.09	5853.41	691.01	2336.80	144.98	
CMD9	3804.40	5843.39	658.05	194.09	211.66	
CMD10	4928.51	7668.64	874.81	2003.87	72.25	
CMD11	4221.83	6495.58	694.71	324.86	92.61	
CMD12	2505.32	3370.08	442.59	896.28	215.31	
1D14	2880.68	3852.51	491.80	759.01	267.06	
15	5157.87	8181.55	878.55	11.92	107.37	
	3465.28	4255.05	518.95	6076.56		

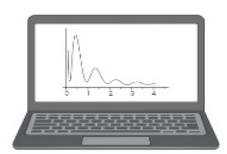
Materials and Methods



PART 1
Nanodrop
and
DNA Dilution

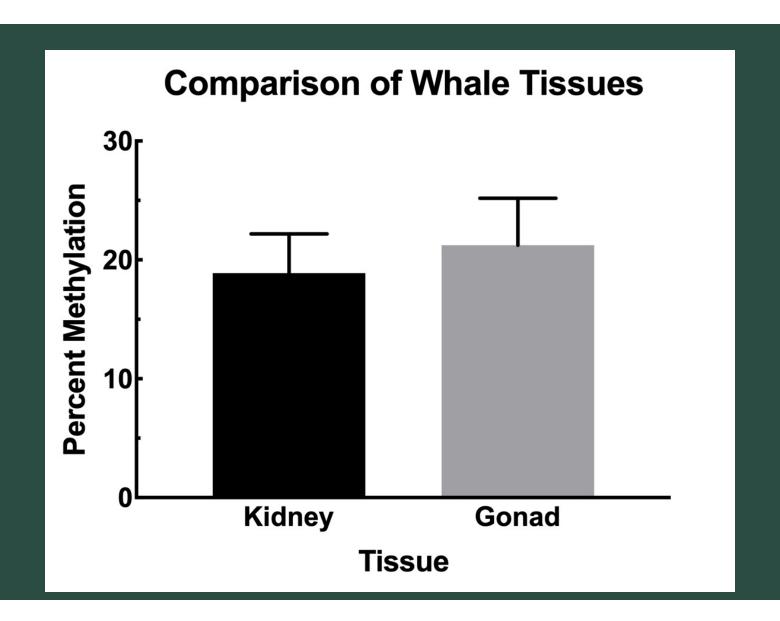
Annealing Buffer

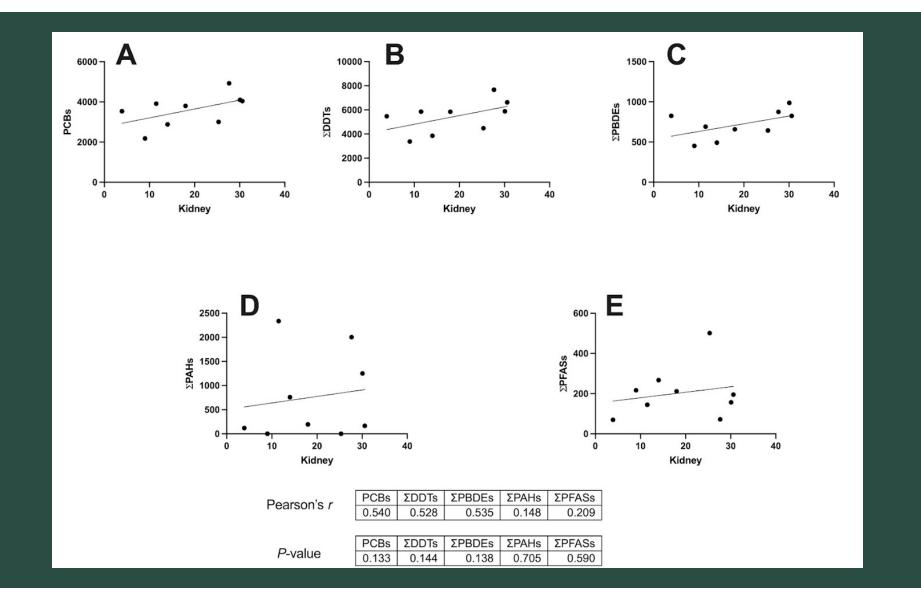
15 uL

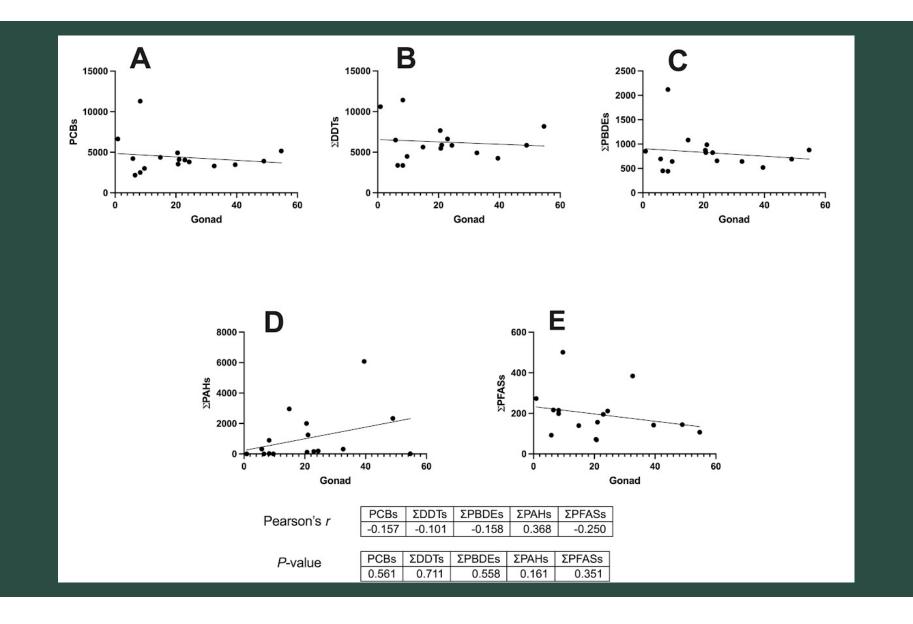


30uL Mixture

Pyrosequencing Plate Nucleotides Enzyme Mix Substrate Mix




Calculation of Percent of DNA Methylation


	Entry II	D: LUMA Jess								EcoRi	Hpall(MM	A) or Mspl	(MMB)				
	Disp.	1	2	3	4	Ţ	5 6	7	8	9	10	11	12	13	14		
	Well	G T		G T	•	С	Α	С	Α	Т	G	Т	G	T	G		
IG MMA	A1	59.77	59.29	10.8	5.9	90.96	66.81	18.43	5.83	58.88	43.97	20.19	5.12	4.7	1.76	1GA G/T=	0.74677
G MMA	A2	47.89	23.21	6.62	3.98	61.92	2 29.87	12.16	3.74	27.78	28.14	11.36	4.58	3.44	1.72	5GA G/T=	1.01295
LG MMB	A3	158.53	58.99	14.22	5.29	177.53	66.17	17.9	5.77	58.15	47.25	19.46	4.01	3.69	2.1	1GB G/T=	0.81255
5G MMB	A4	117.08	25.23	9.53	4.38	129.6	32.07	14.73	4.88	31.05	33.43	13.38	3.55	3.35	1.47	5GB G/T=	1.07665
H2O	A5	0.3	2.13	1.48	1.27	1.16	1.82	2.16	0.55	1.59	1.82	0.81	0.74	1.36	1.56	H20 G/T=	1.144654
1G MMA	B1	66.76	68.62	11.26	5.74	96.37	7 72.57	18.85	7.14	60.85	45.47	20.61	5.29	3.96	1.8	1GA G/T=	0.747247
5G MMA	B2	47.46	25.59	7.25	3.27	65.77	7 32.73	12	4.7	27.21	29.26	12.27	3.67	2.34	2.32	5GA G/T=	1.07534
1G MMB	B3	166.11	64.27	16.55	7.03	186	67.17	21.1	5.93	64.01	53.55	22.59	5.87	4.73	1.58	1GB G/T=	0.836588
5G MMB	B4	108.58	23.45	7.94	4.58	117.17	7 30.72	12.97	4.58	29.78	31.16	10.88	3.16	2.88	1.46	5GB G/T=	1.04634
H20	B5	0.79	5.89	4.45	4.07	2.56	5 1.6	3.71	0.69	4.62	1.43	4.94	0.77	2.39	1.63	H20 G/T=	0.309524
2G MMA	C1	75.88	56.06	13.06	7.05	94.64	4 66.34	18.88	5.34	54.76	49.25	21.24	6.69	4.13	1.86	2GA G/T=	0.899379
			1GA G/	T= 0.746	773 1G	A/B=	0.919045	(1-A/B)X	100=	0.08	080955 X100=		8%				
			5GA G/	T= 1.012	959 5G	A/B=	0.940842	(1-A/B)X	100=	0.05	9158 X10	0=	6%				
			1GB G/	T= 0.812	554												
			5GB G/	T= 1.076	651												
			H20 G/	T= 1.144	654												
			1GA G/	T= 0.747	247 1G	A/B=	0.893208										
			5GA G/	T= 1.07	534 5G	A/B=	1.027716										
			1GB G/	T= 0.836	588												
				. 3.000													

5GB G/T= 1.04634 H20 G/T= 0.309524

2GA G/T= 0.899379 2G A/B= 0.889111

Conclusions

- Genomic DNA methylation in Kidney is lower than that in gonad, but it was not significant.
- No significant correlation between genomic DNA methylation levels and POPs-exposed levels in whales.

Acknowledgements

- Drs. Yoon Hee Cho, Andrij Holian, and Chris Migliaccio
- Special thanks to Minsun Koo and Paulette Jones at University of Montana
- Special thanks to my parents
- NIH (R25ESES022866-07) Opportunity to learn new laboratory techniques in the field of Epigenetics.